LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS
 FIFTH SEMESTER - NOVEMBER 2018

MT 5407 - FORMAL LANGUAGES AND AUTOMATA

Date: 23-10-2018
Time: 01:00-04:00
Dept. No. \square Max. : 100 Marks

PART - A

ANSWER ALL THE QUESTIONS

($10 \times 2=20$)

1. Construct deterministic finite automata to check whether given number is divisible by two.
2. Define non - deterministic finite automata.
3. What is a regular set?
4. Define ambiguous grammar and give an example.
5. Write a grammar to accept $L=\left\{a^{n} / n \geq 1\right\}$.
6. Define generation tree.
7. Eliminate the ε-production from the following set of production rules $A \rightarrow 0 B 1 / 1 B 1, B \rightarrow 0 B / 1 B / \varepsilon$.
8. Define context free languages.
9. If $G=(\{S, A\},\{a, b, c\}, S \rightarrow a A b, \mathrm{~A} \rightarrow a A b, A \rightarrow c, S)$, find $L(G)$.
10. Define star closure.

PART - B

ANSWER ANY FIVE QUESTIONS
$(5 \times 8=40)$
11. Construct a DFA to accept the set of all strings over $\{0,1\}$ ending with 00 .
12. Construct a NFA to accept set of all strings over $\{0,1\}$ ends with 111 or 000 .
13. Write a brief note on Chomsky hierarchy.
14. For the string aabbaaa find the left most and right most derivation using the production rule, $S \rightarrow$ Aas/a/SS, $A \rightarrow S b A / b a$.
15. Find a CNF grammar equivalent to a grammar whose production rules are $S \rightarrow a A b B, A \rightarrow a A / a, B \rightarrow b B / b$.
16. Let $G=(N, T, P, S), N=\{S, B\}, T=\{a, b, c\}$. P consists of the following productions: $S \rightarrow a S B c, S \rightarrow a b c, c B \rightarrow B c, b B \rightarrow b b$, Then show that $L(G)=\left(a^{n} b^{n} c^{n} / n \geq 1\right)$ is a CSL.
17. Prove that union of two regular set is regular.
18. Prove that the families of PSL, CSL, CFL and RL are closed under union.

PART - C

ANSWER ANY TWO QUESTIONS

19. (a) Construct a DFA with minimum states for the following NFA

	a	b
$\rightarrow q_{0}$	$\left\{q_{1}\right\}$	ϕ
q_{1}	$\left\{q_{1}\right\}$	$\left\{q_{2}\right\}$
q_{2}	ϕ	$\left\{q_{2}\right\}$

(b) Construct a grammar to generate the set of all palindromes over $\{a, b\}$.
20. Let $M=\left\{\left(q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right),(\mathrm{a}, \mathrm{b}), \delta, q_{0},\left\{q_{3}\right\}\right\}$ is a finite automaton, where δ is given by $\delta\left(q_{0}, a\right)=q_{0}, \delta\left(q_{0}, \mathrm{~b}\right)=q_{1}, \delta\left(q_{1}, a\right)=q_{2}, \delta\left(q_{1}, \mathrm{~b}\right)=q_{1}, \delta\left(q_{2}, a\right)=q_{4}, \delta\left(q_{2}, \mathrm{~b}\right)=q_{3}, \delta\left(q_{3}, a\right)=q_{4}$, $\delta\left(q_{3}, \mathrm{~b}\right)=q_{3}, \delta\left(q_{4}, a\right)=q_{4}, \delta\left(q_{4}, \mathrm{~b}\right)=q_{4}$,
(a) Represent M by its state table and by its state diagram.
(b) Which of the following strings are accepted by M?
(i) abab (ii)aabbaa (iii) abbbab (iv) aabba.
21. (a) Prove that $L(\mathrm{G})=\left\{a^{i} / i\right.$ is prime $\}$ is not a context free language.
(b) Write the Greibach normal form to generate the context free grammar $L=\left\{w w^{R} / w \in(\mathrm{a}, \mathrm{b})\right\}$ and the production rules P is given by $S \rightarrow a S a / b S b / a a / b b$.
22. (a) Consider the grammar $G=(\mathrm{N}, \mathrm{T}, \mathrm{P}, \mathrm{S})$, where $N=\left\{S,\left(P_{r}\right),(V P), V,(N P), A, N,(A u x), \mathrm{P}\right\}$,
$T=\{$ They, are, flying, planes $\}$,
$P=\left\{\begin{array}{l}S \rightarrow\left(P_{r}\right)(V P), P_{r} \rightarrow \text { They }, V P \rightarrow(V)(N P), V \rightarrow \text { are }, N P \rightarrow(A)(N), A \rightarrow \text { flying, }, \\ N \rightarrow \text { planes }, V \rightarrow(\text { Aux })(P), \text { Aux } \rightarrow \text { are }, N P \rightarrow N, P \rightarrow \text { flying }\end{array}\right\}$ two
derivations and draw their corresponding generation trees.
(b) State and prove pumping lemma.

