LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034 **B.Sc.** DEGREE EXAMINATION – **MATHEMATICS** FIFTH SEMESTER - NOVEMBER 2018 MT 5407 - FORMAL LANGUAGES AND AUTOMATA Dept. No. Date: 23-10-2018 Max.: 100 Marks Time: 01:00-04:00 PART – A **ANSWER ALL THE QUESTIONS** $(10 \times 2 = 20)$ 1. Construct deterministic finite automata to check whether given number is divisible by two. 2. Define non – deterministic finite automata. 3. What is a regular set? 4. Define ambiguous grammar and give an example. 5. Write a grammar to accept $L = \{a^n / n \ge 1\}$. 6. Define generation tree. 7. Eliminate the ε - production from the following set of production rules $A \rightarrow 0B1/1B1, B \rightarrow 0B/1B/\varepsilon$. 8. Define context free languages. 9. If $G = (\{S, A\}, \{a, b, c\}, S \rightarrow aAb, A \rightarrow aAb, A \rightarrow c, S)$, find L(G). 10. Define star closure. PART – B **ANSWER ANY FIVE QUESTIONS** $(5 \times 8 = 40)$ 11. Construct a DFA to accept the set of all strings over $\{0,1\}$ ending with 00. 12. Construct a NFA to accept set of all strings over $\{0,1\}$ ends with 111 or 000. 13. Write a brief note on Chomsky hierarchy. 14. For the string aabbaaa find the left most and right most derivation using the production rule, $S \rightarrow Aas / a / SS, A \rightarrow SbA / ba$. 15. Find a CNF grammar equivalent to a grammar whose production rules are $S \rightarrow aAbB, A \rightarrow aA/a, B \rightarrow bB/b$. 16. Let G = (N, T, P, S), $N = \{S, B\}$, $T = \{a, b, c\}$. P consists of the following productions: $S \to aSBc, S \to abc, cB \to Bc, bB \to bb$, Then show that $L(G) = (a^n b^n c^n / n \ge 1)$ is a CSL. 17. Prove that union of two regular set is regular. 18. Prove that the families of PSL, CSL, CFL and RL are closed under union.

PART – C

ANSWER ANY TWO QUESTIONS

19. (a) Construct a DFA with	h minimum states for	the follo	wing Nl	
		а	b	
	$\rightarrow q_{_0}$	$\left\{ q_{_{1}} ight\}$	φ	
	$q_{_1}$	$\left\{ q_{_{1}} ight\}$	$\left\{ q_{2}^{}\right\}$	
	$q_{_2}$	φ	$\left\{ q_{_{2}} \right\}$	
(b) Construct a gramma	to generate the set of	all palin	dromes	$\{a,b\}$. (16-
20. Let $M = \{(q_0, q_1, q_2, q_3, q_3)\}$	$_{4},(a,b),\delta,q_{0},\{q_{3}\}\}$ is a	finite au	itomator	here δ is given by
$\delta(q_0, a) = q_0, \delta(q_0, b) = q$	$\delta(q_1, a) = q_2, \delta(q_1, b)$	$=q_{1},\delta(q)$	$(q_{2}, a) = q_{4}$	$q_{2}, \mathbf{b}) = q_{3}, \delta(q_{3}, a) = q_{4},$
$\delta(q_3, \mathbf{b}) = q_3, \delta(q_4, a) = q_3$	$\delta(q_4,b) = q_4,$			
(a) Represent M by its s	ate table and by its sta	te diagr	am.	
(b) Which of the follow	ng strings are accepted	d by M?		
(i) abab (ii)aabbaa (iii) abbbab (iv) aabba.				(12-
21. (a) Prove that $L(G) = \left\{a^{i}\right\}$	/i is prime is not a condition of i is prime is not a condition.	ntext fre	e langua	
(b) Write the Greibach r	ormal form to generat	e the co	ntext fre	ammar $L = \left\{ w \ w^R / w \in (a, b) \right\}$ and
the production rules P is given by $S \rightarrow aSa/bSb/aa/bb$.				(8+2
22. (a) Consider the gramma	ar $G = (N, T, P, S)$, where	e $N = \{S$	$(P_r), (VI)$	$(NP), A, N, (Aux), \mathbf{P}$
$T = \{They, are, flying,$	planes},			
$P = \begin{cases} S \to (P_r)(VP), P_r - N \\ N \to planes, V \to N \end{cases}$	$\rightarrow They, VP \rightarrow (V)(NP), V$ $(Aux)(P), Aux \rightarrow are, Na$	$V \to are, P$ $P \to N, P$	$NP \to (A)$	$A \to flying$, $\left.\right\}$. Find two
derivations and draw th	neir corresponding gen	eration	trees.	
(b) State and prove pump	oing lemma.			(12-
	\$	\$\$\$\$\$\$	\$\$	